Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Surg ; 104: 106818, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2061278

ABSTRACT

Once the World Health Organization (WHO) declared the COVID-19 (Coronavirus Infectious Disease-19) outbreak to be pandemic, massive efforts have been launched by researchers around the globe to combat this emerging infectious disease. Strategies that must be investigated such as expanding testing capabilities, developing effective medicines, as well as developing safe and effective vaccines for COVID-19 disease that produce long-lasting immunity to human system. Now-a-days, bio-sensing, medication delivery, imaging, and antimicrobial treatment are just a few of the medical applications for nanoparticles (NPs). Since the early 1990s, nanoparticle drug delivery methods have been employed in clinical trials. Since then, the discipline of nanomedicine has evolved in tandem with expanding technological demands to better medicinal delivery. Newer generations of NPs have emerged in recent decades that are capable of performing additional delivery tasks, allowing for therapy via novel therapeutic modalities. Many of these next generation NPs and associated products have entered clinical trials and have been approved for diverse indications in the present clinical environment. For systemic applications, NPs or nanomedicine-based drug delivery systems have substantial benefits over their non-formulated and free drug counterparts. Nanoparticle systems, for example, are capable of delivering medicines and treating parts of the body that are inaccessible to existing delivery systems. As a result, NPs medication delivery is one of the most studied preclinical and clinical systems. NPs-based vaccines delivering SARS-CoV-2 antigens will play an increasingly important role in prolonging or improving COVID-19 vaccination outcomes. This review provides insights about employing NPs-based drug delivery systems for the treatment of COVID-19 to increase the bioavailability of current drugs, reducing their toxicity, and to increase their efficiency. This article also exhibits their capability and efficacy, and highlighting the future aspects and challenges on nanoparticle products in clinical trials of COVID-19.


Subject(s)
COVID-19 , Nanoparticles , COVID-19/therapy , COVID-19 Vaccines , Clinical Trials as Topic , Humans , Nanoparticles/therapeutic use
2.
S Afr J Bot ; 143: 428-434, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1294211

ABSTRACT

COVID-19 (SARS-CoV-2) is a viral disease that causes acute respiratory syndrome, which has increased the morbidity and mortality rate throughout the world. World Health Organization has declared this COVID-19 outbreak as pandemic and classified health emergency throughout the world. In the recent past, outbreaks of SARS and MERS have shown the interspecies transmission potential of coronaviruses and limitations of already prescribed drugs to overcome this global public health issue. Therefore, there is a dire need to identify a new regimen of targeted drugs from natural compounds having anti-COVID19 potential. This study aimed at screening 1018 brown algal natural compounds (many of them previously reported to have immunomodulatory effects) having probable anti-COVID19 potentials. The source compounds were extracted from MarinLit, a database dedicated to marine natural products and screened against COVID-19 main protease. The top seven compounds were further analysed, and their interactions with the active site were visualized. This study will further warrant screening the potent compounds against the virus in-vitro conditions.

SELECTION OF CITATIONS
SEARCH DETAIL